If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+400X-16000=0
a = 1; b = 400; c = -16000;
Δ = b2-4ac
Δ = 4002-4·1·(-16000)
Δ = 224000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224000}=\sqrt{6400*35}=\sqrt{6400}*\sqrt{35}=80\sqrt{35}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(400)-80\sqrt{35}}{2*1}=\frac{-400-80\sqrt{35}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(400)+80\sqrt{35}}{2*1}=\frac{-400+80\sqrt{35}}{2} $
| (2x+44)+(4x-7)+(4x-7)=180 | | m/4-5=-14 | | 0.06x(1-0.4X)=0.4X | | 5/10y-4=4 | | 6x+18=3x+69 | | 2x+1=(x-1)+14 | | (x+40)°=180° | | x25.45=(x+1)1.04 | | (x+40)°=80° | | (x+40)°=@80° | | 9x+10+2x=7x-14 | | 5x+39=8x12 | | 2x+71=379 | | 3x1=1/3- | | 3y-17=18 | | 2x+50=600 | | 2x+9=6x-2x-11 | | 16t^2+18t+5=0 | | 3/4x+1/5=1/2x-7 | | 20-4x=5-7 | | H(t)=-16t^2+288t | | |2x|=|10x| | | 5x+6=10-3x | | |3x-2|=10-x | | 4n-52=212 | | f+f+f=3f | | 4n+100=140 | | 4n-100=140 | | 125-2x=3x+20 | | 1/(k(k+2))=0.5/k+0,5/(k+2) | | x^2+5x+25/2=0 | | 1+90/x=90 |